
Copyright On-Fire Associates Page 1 4/13/2009

Best Practices in Software Technology Governance

Strategic reuse of software is a compelling avenue for engineering productivity

Ross Seider Jim Masciarelli
On-Fire Associates Power Skills Solutions

Abstract

This white paper describes the results of an industry
search for best practices in software engineering
operational governance and software reuse in
particular. Changing a distributed organizations’
reuse culture from opportunistic failure to a core
managed strategy, requires new operational
governance practices. The desired managerial model
must be scalable, distributed, and proven in similar
environments. Successful organizations’ savings
from duplicate development costs, fund numerous
new ventures and customers benefit from easier
interfaces and more consistent products.

Introduction

Strategic driven reuse of developed software is one of
the most compelling avenues for rapidly increasing
engineering productivity. The many gains in
operating efficiencies can extend to support
organizations and to end customers. In many cases,
leveraging commonalities of technical assets,
methods and tools is central to being competitive in
the marketplace.

To achieve the benefits across business unit
divisions, corporations may need to adjust certain
operating behaviors and priorities. This is especially
the case when the divisional culture and performance
goals are strongly aligned along the business unit’s
boundaries (i.e. vertical alignments). This research
sought to identify best in class methods and
incentives to encourage cross business unit
(horizontal) reuse programs hereby referred to as
software reuse governance.

Large corporations often structure themselves into
business unit organizations, each run as profit and
loss centers. In many cases, the linkages between
business units are intentionally limited, to allow the
management teams maximum flexibility to achieve
market success. The most important goals are
associated with the vertical performance of the
business unit and relatively few goals relate to

horizontal, or corporate-level objectives. For business
units with technology overlaps, duplication of
development efforts is a common situation. When
this occurs, the potential for cost savings can be
significant.

Objectives

The objective of the study was to identify effective
technology sharing governance methods that impose
minimal disruption to the vertical focus of the
business units. The study focused on software
technology, in part because the sponsor’s primary
value was delivered in software and secondarily,
software is one of the more complex of R&D
deliverables to share among projects. The study
specifically sought organizational structures, roles,
metrics and incentives that promote technology
sharing. It did not address the readily available
solutions regarding technology challenges associated
with sharing software.

The desired outcome was to get engineers and
managers working in different business units, to
selectively undertake efforts that would not directly
benefit their vertical organization. Of greatest interest
were the one-to-many opportunities, i.e. where
multiple consumer teams utilize development from
one producer team. Such efforts would be
particularly valuable if the producer team agreed to
support and maintain the code for the benefit of the
consumer teams. Of lesser value, but still of interest,
were joint development efforts (one-to-one
opportunities) between two engineering teams. Such
situations often arise independently of a strategic
reuse effort, and are justified solely on the business
self-interests of the two parties.

Discussion

A good definition of governance comes from Impact,
Fall 2005, MIT Center for Technology and Industrial
Policy:



Copyright On-Fire Associates Page 2 4/13/2009

“Governance is the formal and informal patterns of
interaction, structures and systems that’s serve to
orient and connect independent stakeholders over
time so as to advance their internal, separate interests
and their collective system wide interests.”

There are two operating strategies for software
technology sharing; reuse and repurposing. Reuse is
more valuable (and challenging) as it intends the
developed software to be used, as is, without
alteration. Repurposing implies a redesign effort for
each new sharing application. The paper will discuss
both, but focuses on reuse.

It is expected that governance practices that work
well between business units should work at least as
well within a business unit. By solving the former, an
enterprise-wide solution can be created. The study
identified four non-technical management practices
that enable a multi-business unit reuse strategy.

 Discovery –the methods by which new
technology sharing opportunities are
uncovered and existing reusable technology
is advertised

 Incentives / funding – the consideration that
encourages the production of and
consumption of sharable technology

 Controls – the practices that control the
design, and obligations to support and
maintain shared technology

 Sustainability – the means by which a
shared technology creates a self-sustaining
ecosystem, surviving business changes and
the expiration of incentives.

Developing software for reuse imposes considerable
short and long-term burdens on the producers.
Beyond increases in the initial development
complexity and validation efforts, over 50% of
software life cycle costs are due to long-term support
and maintenance.i The additional design burdens can
be undertaken in parallel with the initial development
or, afterwards as a post-development activity. The
former yields a longer initial development cycle, and
the latter requires two development cycles. The latter
approach also yields two related code bases, and two
support burdens. The additive effort can be
performed by the designers of the application
functionality, who need to apply the reuse design
requirements to their code, or by re-use experts who
will take the completed application and adapt it for
reuse. In either case, special skills are required to

prevent overly generalized, bloated and poorly
performing software.

Management Reuse Models in Software
Development

Numerous researchers have pointed out that an
enterprise’s ability to successfully create and
consume reusable software is highly correlated with
high maturity organizations. Systemic reuse is a
strategy and isn’t free. R&D’s traditional “new
feature by new feature” drumbeat has to be replaced
by new operational considerations. Numerous
technical issues (beyond of the scope of this paper)
come into play as well. The bottom line is that
design teams, if driven strictly by vertical BU
incentives, will not undertake the burdens of reuse.
Management must create offsetting considerations for
strategic reuse to succeed. In fact, recognizing
commonality and reuse of technology as a business
and organizational strategy is key to the success of
each of the following identified management reuse
models:

Centralized Model

The funding of a centralized development and
planning organization is the most frequently
encountered way enterprises organize to produce
common software.

Sharable software can be produced, delivered and
maintained by a central development team, located
external to the business unit. Modules are delivered
to the business units for installation into products and
services. The central producer group is a cost center,
funded as overhead or via a “development tax” on the
business units. Revenue from sales is not allocated to
the producer group, but remains in the business unit.
The development roadmaps for centralized teams are
determined, in part, by the business unit community
and executive management. For the software to be
shared (rather than repurposed by the BUs), the
producing group usually commits to support the code
for a multi-year time period. This implies a long term
funding commitment to the centralized group, its
technology or platform.

Self-interest can drive the business units to utilize the
common technology. The business units avoid
duplicate expense and can apply their resources into
other areas. Where self-interest fails to sway,
management dictate usually forces the use of a
common software technology.

One primary problem with the centralized model is
that the producers are somewhat removed from
marketplace consequences. Business unit



Copyright On-Fire Associates Page 3 4/13/2009

performance metrics and pressures, e.g. ones that
associate revenue, growth and margins to what
developers do and how they behave, do not directly
ripple back to centralized producer groups. For better
or for worse, the BUs provide a buffer. With
management commitments to multi-year funding,
there is less pressure on centralized groups to
continuously improve software development
operations.

Centralized teams have a propensity to grow bigger
each year and get less responsive to their
“customers”. The business ratios that help guide
expense budgets do not work on centralized teams
funded through overhead or business units taxes.

Library Model

The library model establishes a corporate repository
for reusable modules. Producing organizations are
rewarded when reusable modules are donated. There
are donation criteria in place to qualify that the
software has reuse potential, and has met quality,
performance and documentation criteria. A variant of
the model has a library staff commissioning business
units to produce certain modules.

The library’s contents are actively promoted to
consumption groups. The timely discovery of
reusable technology is important because
architectures are strongly influenced by the selection
of major software components. Once an architecture
is established, new reuse opportunities diminish.

The consuming group is responsible for validating
the usefulness of the code, learning how it operates,
integrating it into the project and long-term support.
Each consumption event scales these costs. Producer
and library costs also factor into the total economics,
but are sunk costs by the time the project makes a
reuse decision. A generally accepted rule of thumb; if
more then 75% of the code can be reused without
modification, it is more economic than designing new
code. Less then that is either of marginal benefit or
negative benefit.ii

Library based reuse models have been successful
with stable, well understood, low level application
areas such as statistical packages, hardware drivers
etc.

A variant of the library model was in practice in
Japan in the late 1980s. Companies like NEC and
Toshiba used the software library like a component
database, to log and characterize working software
modules. In brief, they manage the software modules
as if they were semiconductor parts. The distinction;

the producer retained long-term responsibility for the
maintenance and support.

OEM Model

There are countless companies supplying technology
components in the form of software. Reuse is central
to building and sustaining their business strategy.
Long ago, these companies solved the challenges of
building reusable components and making them
available for worldwide engineering reuse. The OEM
model applies their business methodology to
governance.

An obvious difference between the library / central
models and the OEM model is that the OEM
producer has a long-term financial interest in the
successful implementation by the consuming party.
License fees, professional service support fees, and
maintenance fees accrue from successful
implementations and market success. Long-term
support comes from a single producer team rather
than each consumer team. The consumer groups can
avoid building duplicate expertise and can put their
funds to better use elsewhere. The OEM “contract”
provides adequate assurances that the producer will
support the consumer appropriately.

What is straightforward to implement between
companies is not necessarily easy to implement
between business units of a company. Creating a self-
sustaining producer eco-system is challenging when
the entire available “market” is limited to internal
business units. Tracking license usage across product
lines (and tracking cross-BU revenue recognition)
adds complexity to business accounting systems. The
OEM model suffers from sustainability if the reused
software is unavailable to external markets.

Open Source Model

The Open Source community has a well-established
model for software sharing governance.

Open Source are not-for-profit corporations, set up as
virtual communities of volunteers with common
interests. They are bonded by an allegiance to the
mission they promote or the projects they undertake.
Product roadmaps are driven by a collective altruism,
community commitment, and technology interest.

Projects are run in a highly distributed manner, each
governed by a separate program management
committee, linked to the community by basic
operational by-laws. What they produce is offered
free-of-charge to licensees.



Copyright On-Fire Associates Page 4 4/13/2009

A self-sustaining volunteer eco-system is maintained
by technical challenge, a meritocracy that recognizes
long-term contributions and bragging rights. The
producer teams provide best effort support to the end
user community. New volunteers earn their initial
community credentials by spending time on the
maintenance team. If the software’s end user base is
broad enough, third parties may offer formal, for-fee
support services and service level agreements.

One must be careful in drawing governance parallels
between corporate development environments and
Open Source communities. The commercial
pressures facing enterprises and the management
hierarchies they employ to drive timely decision-
making are for the most part absent in Open Source
communities. Decisions in Open Source
organizations can take weeks as the team works
towards consensus. Open Source programs rarely
face the same delivery time pressures as enterprise
programs, or deal with inter-project competition for
scarce resources.

Open Source communities have demonstrated that
distributed, self-selecting, volunteer development
teams can produce complex and competitive products
that parallel the best of enterprises. Open Source’s
collegial, consensus-driven development method
does appear in rare corporate cultures and its team
based code methodology is similar to X-treme
programming techniques used in new software
development paradigms.

Survey for best practices

The following section describes some software reuse
practices at four major companies. These firms were
selected because of their multi-business unit structure
and their history with technology reuse. The data
comes from executive interviews and public-domain
documents. The narratives cover somewhat
overlapping time periods, within the last 10 years,
and represent practices at some of the business units
within the enterprise.

Cisco Systems

Cisco Systems is organized into roughly twenty
business units each made up of 150 – 750 people.
They have 14,000 engineers, thousands of contractors
plus outsourced programs. Their business units are
centered on a technology or product set.
Development and product management comprise the
business unit, with other services being centralized at
a division or corporate level. Due to Cisco’s
aggressive acquisition strategy, new products and
staff are constantly being merged and integrated.

Once integrated, most business units share corporate
services for manufacturing, sales, finance, service
and marketing.

Cisco runs three centralized development groups as
cost centers. They are the network operating system
platform group, and the network management
platform group. These technology groups plus a tools
and methods group report to the Chief Development
Officer (CDO). The software developed in these
groups is utilized within many Cisco products and
development departments. Product sales revenues are
attributed to the business units. Revenue is not back
allocated to the central development group. Business
units pay for maintenance service costs incurred by
the centralized engineering groups. Recently, they
also began paying for customization development
(see sidebar story).

Usually, business units utilize the core platforms and
methods. Acquisitions are rapidly migrated off legacy
equivalent technology and onto the standard
platforms. Business units vie for the mind-share of
the central group, for work on their high priority
features and capabilities. Business units can fund
special developments in central engineering, or
contribute developers for important features. A Cisco
Technology Council settles resource contention
disputes.

The Cisco technology council, comprised of senior
technologists from each business unit, is chartered to
promote technology reuse. The council meets once a
month. Each council member is responsible for
knowing the details of all projects within their
business unit, and being generally aware of projects
underway at all other business units. Technology
sharing opportunities are uncovered and advertised
during council sessions.

The council controls a modest expense budget that is
used to encourage the behavior of business units. The
council can commission work to be executed in one
of the central engineering groups, in a business unit’s
development team, or at external third parties.

Motorola

In the late 1990s, Motorola was organized as five
business units, each run as an semi-autonomous P&L.
Certain corporate functions were provided either as
an external service (e.g. Motorola University) or as a
centralized service with dotted-line providers
embedded within the BU (e.g. Finance or Human
Resources). Each P&L was further sub-divided into
BUs with multiple market and product development
teams within each. Motorola overhead funded a
centralized research group that had a dotted-line



Copyright On-Fire Associates Page 5 4/13/2009

management link to research groups within the
business units.

The Motorola CEO’s office required each of its top
35 business unit to host a long-range plan event every
year. This event included a five-year forecast of
technology efforts, a multi-year market outlook, as
well as a long-range business plan. The business units
present this information in a two day event, one day
focused on technology / market futures, and the other
on business plan outlook. The 35 events consumed a
significant portion of the corporate calendar and
required diligent preparation. It was a primary inter-
BU discovery mechanism and the way the corporate
officers stayed connected to the evolving businesses.

The content and formats for the outlook review were
standardized. The presentation and backup materials
were published one week before the meeting and
attendees were expected to have read the content
before arriving. The market roadmap review
included analysis of competition, market share,
market outlook, cost / price trends and disruptive
threats and opportunities. The technology portion
included technology roadmaps, experience curves,
quality projections, and disruptive technology threats.
The standardized materials and advanced publication
allowed the sessions to be fast paced. Contentious
issues, either within the BU or across BUs, were to
be highlighted. The first day’s review was “scored”
for content, quality and presentation. A business
unit’s yearly performance review included this
evaluation.

Depending on the business group, the first day’s
meeting could have very broad attendance from other
BUs. Invitations to technology roadmap reviews were
opportunities to strengthen professional linkages and
the primary means to discover new opportunities for
cooperation. The second day’s meetings were for
business planning executives.

Software technology sharing efforts were self-funded
by the business units. There were no special financial
incentives from the corporation. Motorola was one of
the companies to employ an OEM license model
(and/or transfer pricing mechanisms) to allocate the
revenue benefits between cooperating business units.
Reused software was sustained by the revenue and
profits earned by successful integrations.

Apache Software Foundation and the Eclipse
Foundation.

The Apache Software Foundation (ASF) was formed
in 1999 as an outgrowth to work of the National
Center for Supercomputing Applications (NCSA) at
the University of Illinois. The NCSA had developed

an HTTP (web) server platform that achieved
considerable market success due to its generous
licensing, functionality and reliability. For various
reasons when NCSA discontinued their efforts in
1999, a user community took over support for this
code-base. The Apache server has been widely
accepted and is a dominant web server on the
Internet. The ASF today has roughly 50 active
projects.

IBM founded the Eclipse Foundation in 2003. It was
established as an Open Source development effort
that soon attracted a dozen sponsors from industry.
Eclipse develops standardized tools and methods for
object-oriented software development environments.

Both communities are set up as virtual, not-for profit
(501-C3) corporations. There is a minimal corporate
hierarchy and most members are volunteers. The
corporate structure shields the members from third-
party patent infringement claims.

Boards of Directors govern the foundations. Most
Eclipse directors are nominated by the sponsoring
firms. The Apache directors are meritorious
volunteers, nominated by the contributing staff. The
Boards are responsible for a modest level of
fundraising, establishing and monitoring bylaws,
running the licensing programs, protecting
copyrights, and chartering new development
programs.

Program management committees run each
development program. The program management
committees sub-divide into a 1) requirements
committee (feature capture, evaluation, feature
themes, priorities), 2) a planning committee
(roadmaps and release themes) , and 3) architecture
(design and development). The program teams are
independent of each other and are chartered to
promote the long-term objectives of their programs.
They operate within the bylaws of the foundation.
Communications is public and other programs can
easily monitor the progress of any other program and
uncover reuse opportunities.

The ASF directors run a new program incubator
where new concepts can be temporarily parked while
interest levels are assessed. The incubator filters
prospective projects based on them growing into
successful meritocratic communities. The ASF’s
concern is that a new project needs a critical mass of
volunteers to sustain its execution. If the program
cannot attract skilled volunteers, it is cancelled. Also,
ASF will only start an incubator program if a code
base exists. They have found that a collegial
approach is difficult to maintain if there is no existing
code base.



Copyright On-Fire Associates Page 6 4/13/2009

New program nominations for the Eclipse Board of
Directors, come mainly from the Eclipse
Requirements Council, a group comprised of
members from the 25 sponsors.

Hewlett Packard

Of the for-profit organizations evaluated in this
study, Hewlett Packard’s technology reuse efforts in
the HP-UX and Openview business units (now called
HP Software) bears considerable resemblance to the
Open Source model.

Founded in 1933 in a Palo Alto garage, HP served the
corporate market with highly engineered, high quality
instruments and systems The corporate culture,
known as “The HP Way” was famous for high
consensus and collaborative style. Organized into
autonomous, vertically driven business units,
development teams focused on what mattered to
corporate buyers. This culture began to change in the
mid-1980s with the explosive growth of PCs and ink-
jet printers.

Up to that time, HP had not been known for agility
or responsiveness. Moreover, the attributes valued by
retail customers and distribution channels were
different than the values desired by corporations. For
example, while HP was able to serve the corporate
market with just 5 models of printers, it needed 50
models to support the retail market.iii Retail
distribution priorities were availability, price and
functionality, in that order. This was the opposite of
the priorities of corporate customers.

A radical cultural adjustment was needed for the
retail products to succeed. The solution had HP move
the printer division operation to a green-fields
location in Boise Idaho. There they built a new
culture more tuned to the new business realities. In
this regard, HP’s experience with inkjet printers
mirrored IBM’s experience with the early PCs. To
establish an agile and responsive retail cultural, IBM
also was compelled to move their emerging PC
operations to a green-fields location near Dallas
Texas. Today, the “HP Way” includes a culture that
resembles an Open Source program.

The HP-UX operating system and the HP Openview
platform businesses have been providing value to
customers for over a dozen years. HP-UX is a variant
of the UNIX operating system and is used on most of
the larger HP computers. Openview is a systems and
network management platform for data center
management. The platforms earn direct revenue from

end item sales as well as integrate into other HP
products and services.

A re-use eco-system provides economic support to
both programs. A worldwide third party development
community produces and consumes platform
extensions and variants. Over 1,000 partners create
and sell Openview applications. The platforms are
sold and supported like any other HP product. The
profit margins sustain and extend the eco-system.
The platforms’ corporate footprint encourages
enhancement efforts by third parties. Functionality
from acquisitions like Peregrine, Mercury Interactive
and Opsware accelerated the breath of Openview’s
attractiveness to third parties.

Among the processes that promote discovery of new
opportunities, long-range roadmap reviews are held
with developers and partners. Yearly events, such as
the Openview Forum, and HP-UX user groups,
showcase the roadmap and provide third party
feedback. Regional updates take place at trade shows
and other forums.

Alternative practices

Discovery - To foster inter-group discovery,
Microsoft’s CEOs hosts a twice a year summit with
the top 100 business managers. Meetings take place
around a large conference table with one seat
occupied by the business unit leader and seats behind
the leader (away from the table) occupied by the
business unit’s CTO and one or two other key staff.
The meetings include a presentation by each business
unit exposing a 3-year forward, and one-year back
operational view, and the challenges they expect to
face in meeting future objectives. The CEOs present
common thrusts and issues. The meeting exposes
participants to efforts underway across the
organization, opportunities for shared efforts and
potential duplications of effort.

Reuse at Oracle has been stymied by aggressive
acquisitions and marketing commitments to maintain
and extend overlapping product sets. Reuse at Oracle
is more an event than a managed strategy. Top down
directives from the CEO / CTO are frequently the
result of a business situation. Incentives are
sometimes used to drive the initiative. The study
found similar approaches at numerous other
technology companies.

Conclusions

Corporate wide governance practices and policies are
mandated by regulations like Sarbanes Oxley with
oversight by organizations like the SEC and
compliance is a matter of law. The biggest challenge



Copyright On-Fire Associates Page 7 4/13/2009

facing organizations is in how to define operational
controls implied by such legislation. Guidelines for
Corporate governance at the board level is well
understood but operational governance and risk
management practices vary on many dimensions in
each working environment.

Product development operational governance
revolves around project lifecycle management,
quality management, and portfolio management.
Commonly encountered life-cycle models are Stage
Gate processes, waterfall development practices, total
quality management, six-sigma, ISO-9000 etc. The
governance can be loosely coupled across the
enterprise, each division exercising its freedom to
operate as it chooses.

Effective technology sharing governance practices
tend to be tightly coupled across the enterprise. This
is especially the case with the incentives, funding and
discovery processes. However, opportunistic, ad hoc
cooperation between business units frequently yields
successful results as well.iv Among enterprises, there
is wide range of styles. The practices reflect the
culture, history, leadership, individualism, power
structure, etc. of the company. Some companies view
their distinctive practices as a competitive advantage.

There are major challenges to software reuse. Few lie
with the front line developers. Developers already
reuse or repurpose code (most often their own). They
do not have a “not invented here” bias except when
the consequences of failure (imposed by
management) overwhelms their reticence to recreate
something that already exists. The barriers to
software reuse are not technical, though there are
many technical challenges to work through. Software
technology is advancing at unprecedented rates, and
many of these advances make software more modular
and reusable.

The primary business challenge is solving the
discovery and incentive problem. Developers cannot
reuse software they do not know about. A project’s
reuse opportunity window is narrow. Software reuse
components must be considered very early in the
development cycle, or the opportunity window will
have passed.

Proper incentives can overcome skeptical concerns
that software reuse is either risky or another
management “program de jour”. The most effective
incentive systems set aside funds that spanned
multiple fiscal years. Depending on the model,
incentives may be needed for both producers and
consumers.

Management impatience / intolerance to failure is
another challenge. Creating a self-sustaining reuse
process takes multiple cycles of learning, adjustments
and time. Not every project attempt will be
successful. There are numerous complexities in
selecting the best reuse opportunities and correct
incentives. This is especially the case when
beginning.

Leadership matters--someone must be able to drive
the vision for leveraging commonality and
technology sharing and be accountable for delivering
the results. Identifying a “technology reuse czar”, or
chartering and funding a reuse committee or
“commonality board” are typical approaches. They
are responsible for allocating the incentive funds,
tracking actual reuse activity and calculating the
delivered value.



Copyright On-Fire Associates Page 8 4/13/2009

Governance Case Study

Cisco Systems – MPLS/RSVP Development

Cisco is well known for its aggressive acquisition
strategy. When the expertise for major, new, shared
functionality arrived through acquisition, the
project’s size and demands overwhelmed the small
number of experts. The situation forced changes to
the standing governance rules.

In the late 1990s, Cisco Systems Inc. commissioned
its central engineering groups to develop a new class
of routing protocols broadly known as Multi-Protocol
Label Switching (MPLS) and the accompanying
Reservation Protocol (RSVP). MPLS/RSVP was an
emerging inter-networking standard for reserving
network bandwidth and providing better end-to-end
performance across IP networks. The development
was to serve all Cisco business units (BUs) and
would become part of Cisco’s core platforms. Many
Cisco BUs were demanding this capability.

The technical expertise on MPLS/RSVP primarily
originated at a company that Cisco recently acquired.
The engineers were assigned to the central
engineering team to work on the project. As the
development proceeded, it ran into governance
difficulties as it approached the point of integration
into the four Cisco’s platforms for which the central
engineering team had responsibility.

 MPLS was an unusually large and complex
development, and skilled engineers were in
short supply

 It had to integrate, in parallel, into four
different platforms (IOS, IOX, DCOS and
Linux).

 The standard was still evolving. There were
follow-on MPLS standards that had to be
developed

 There were customer specific special
adaptations that would be required before
the functionality was deployable.

 Teaching the BU’s engineers how to connect
their software to the new MPLS platform
functionality required considerable effort.

BU-specific engineering development is done within
the BU’s operating funds. Functionalities developed
by corporate-funded central engineering teams are
imported as common components and libraries. A
Cisco Technology Council establishes the priorities
for central developments. The Technology Council is
a corporate consortium of technologists, marketers
and business leaders who also control a pool of funds
applied to opportunistic shared technology
development. Cisco’s Technology Council had
contributed funds to hire additional engineers for the
platform MPLS / RSVP development effort. Now the
question was whether they would fund any of the
costs needed to make MPLS deployable?

It was expected that there would be inter-BU disputes
regarding feature sequencing and availability across
the four platforms. What was not anticipated was the
level of customer-specific customization.
Historically, this was the BU’s responsibility. A
related problem was how to validate numerous
requests for customization coming from the BUs.
Without skin in the game, the BUs were not
motivated to filter the incoming customization
requests

New governance policy had to be developed to
account for the desired feature development velocity
and the funding model for customizations. The new
rules required the BUs to compensate the central
group for requested customizations. All changes had
to be provided by the central development teams. The
chief development officer (CDO) arbitrated disputes
between the parties (or the Technology Council) over
what constituted a customer special versus a needed
standard feature. Disputes over the expenses (dollars
or time) to execute a customization were also settled
by the CDO.

The primary benefits of this model were 1) it forces
the BUs to be financially prudent regarding which
customizations to undertake and 2) it got the
Technology Council back to using its incentive
budgets for opportunities, not core requirements.



Copyright On-Fire Associates Page 9 4/13/2009

Summary Comparison Chart

Cisco Motorola Microsoft
Apache
Software

Foundation

HP
Software
Division

Reuse
Sharing
Model

Centralized OEM Library Open
Source

Open
Source-like

Reuse
Discovery

Monthly
Technology

Council
Meetings

Yearly
roadmap
reviews

6 Month
Summits

Public
communications

Eco-system
roadmap
reviews

Reuse
Incentives /
Funding

“Tax” to fund
central group

Sustaining and
customizations

fees

BU self-
funded +
Revenue
allocation

Self
sustaining
eco-system

Altruism of
volunteers

Self-interest of
program team

Self-
sustaining
eco-system

Reuse
Controls

Disputes
arbitrated by

CDO or
Tech Council

Inter-BU
agreements

Common
practices

from
Technology

Councils

Incubator and
program centric

decisions

Common
practices from

technology
councils

Reuse
Sustenance Yearly cost

budget

BUs fund
their

interests

External
sales and

P&L

Critical mass
community in

place

External sales
and eco-
system

sponsorship



Copyright On-Fire Associates Page 10 4/13/2009

.

i Griss, M, L; Software Reuse From Library to Factory; IBM Systems Journal; December 1993

ii Cusumano, Michael, A., Systematic Versus Accidental Reuse in Japanese Software Factories; Sloan School of
Management, MIT Cambridge, Massachusetts; WP#3328-BPS-91

iii Fisher, Lawrence M; How HP Runs its Printer Division;
Strategybusiness.com/press/16635507/12217?tid=230&pg=all

iv Fichman, Robert G., Kemerer, Chris F., Incentive Compatibility and Systematic Software Reuse; Journal of
Systems and Software, July 2000.


